
Week 7 Part I
Kyle Dewey

Monday, August 6, 12

Overview

• Code from last time

• Array initialization

• Pointers vs. arrays

• Structs

•typedef

• Bubble sort (if time)

Monday, August 6, 12

Code Wrap-Up

Monday, August 6, 12

Array Initialization

// fine
int arr1[3] = { 1, 2 3 };
...
// compiler issues warning
int arr2[2] = { 4, 5, 6 };
...
// arr3 contains { 1, 0, 0 };
int arr3[3] = { 1 };

Monday, August 6, 12

Pointers vs. Arrays

Monday, August 6, 12

Pointers vs. Arrays

• Massive point of confusion that even C
veterans mess up on

• C allows for pointers to be treated like
arrays:

char* string = “moo”;
// string is a pointer
string [0]; // returns ‘m’

Monday, August 6, 12

Pointers vs. Arrays

• However, C also has an explicit array type

char* string1 = “moo”; // pointer
char string2[] = “cow”; // array

Monday, August 6, 12

Pointers vs. Arrays

• Pointers can point anywhere, as long as it is
of the correct type

char character;
char* string1;

string1 = “moo”;
string1 = “cow”;
string1 = &character;

Monday, August 6, 12

Pointers vs. Arrays

• Variables of the array type can only point
to what they were initialized to

char string[] = “foobar”;

string[0]; // returns ‘f’
string = “foo”; // compiler error

Monday, August 6, 12

Pointers vs. Arrays

• Variables of the array type must be
initialized to something

• gcc gives an error

• ch allows this but crashes if you try to do
anything with it

char string[]; // compiler error

Monday, August 6, 12

...what?

• Questions:

• Why introduce a special type that is
more restrictive than a pointer?

• Why can’t they be reassigned?

• Why is this useful?

Monday, August 6, 12

Internal Representation

• A pointer is a variable that holds a memory
address

• The array type is actually an address in and
of itself

• Effectively a constant

Monday, August 6, 12

Internal Representation

• Since it acts like a constant, it cannot be
reassigned

• When we say:

char string[] = “moo”;
printf(“%s”, string);

• ...the compiler replaces all occurrences of
string with the actual memory address
where “moo” is stored

Monday, August 6, 12

Internal Representation

• When we say:

char* string = “moo”;
printf(“%s”, string);

• ...the compiler will first look up what the
value of string currently is, and pass that
value along to printf as a memory address

• There is an extra step here

Monday, August 6, 12

Analogy

• With the array type, it’s like:

#define CONSTANT 5
printf(“%i”, CONSTANT);

• With the pointer type, it’s like:

int x = 5;
printf(“%i”, x);

Monday, August 6, 12

Decay

• Array types can decay to a pointer type

• This can be seen with functions:

void foo(int* pointer);

int main() {
 int arr[] = { 1, 2, 3 };
 foo(arr); // legal
}

Monday, August 6, 12

What to Remember

• Pointers can act like arrays, but arrays
cannot act like pointers

• When the compiler starts complaining
about * versus [], this could be why

Monday, August 6, 12

Structs

Monday, August 6, 12

Problem

• We want to represent a phone book

• Each entry has:

• Name

• Phone number

• Address

Monday, August 6, 12

Question

• Which type(s) is/are appropriate for:

• Name?

• Phone Number?

• Address?

Monday, August 6, 12

Possible Representation

• Use parallel arrays

• Each array holds one kind of item

• Index N refers to all information for
entry #N

char** name;
char** address;
int* phoneNumber;

Monday, August 6, 12

Problem

• Poor separation of concerns

• We have to pass around everything related
to one person, which is annoying and error
prone

void printPerson(char* name,
 char* address,
 int phone);

Monday, August 6, 12

Another Solution

• Use structures, aka. structs

• Put all data relevant to one entry in one
place

struct person {
 char* name;
 char* address;
 int phone;
};

Monday, August 6, 12

Structs

struct person {
 char* name;
 char* address;
 int phone;
};

void printPerson(struct person p);

Monday, August 6, 12

Accessing Structs
• Use the dot (.) operator

void printPerson(struct person p) {
 printf(“Name: %s\n”, p.name);
 printf(“Address: %s\n”, p.address);
 printf(“Phone: %i\n”, p.phone);
}

struct person {
 char* name;
 char* address;
 int phone;
};

Monday, August 6, 12

Modifying Structs
• The dot (.) operator can be used along

with assignment
struct person {
 char* name;
 char* address;
 int phone;
};

struct person p;
p.name = “foo”;
p.address = “123 Fake Street”;
p.phone = 0123456789

Monday, August 6, 12

Initializing Structs

• For a struct definition like so:
struct pair {
 int x; int y; };

• We can do:

struct pair p = { 2, 3 };
struct pair p2 = { .x = 2, .y = 3 };

• (Doesn’t work in ch, but it does in gcc)

Monday, August 6, 12

Pointers to Structs

• Structs can also be accessed via pointers

• Can access like so:

struct person p;
struct person* pointer = &p;
(*p).name = “foo”;
(*p).address = (*p).name;
(*p).phone = 0123456789

Monday, August 6, 12

Pointers to Structs

• Structs can also be accessed via pointers

• Can also access with the more readable
arrow operator

struct person p;
struct person* pointer = &p;
p->name = “foo”;
p->address = p->name;
p->phone = 0123456789

Monday, August 6, 12

Struct Semantics

• Consider again:

void printPerson(struct person p);

• When structs are passed, the whole thing is
copied

• Note that this is a shallow copy

Monday, August 6, 12

Shallow Copy
struct person {
 char* name;
 char* address;
 int phone;
};

“Bob” “124 Fake Street”

9876543210name address

phone

Monday, August 6, 12

Shallow Copy

“Bob” “124 Fake Street”

9876543210name address

phone

9876543210

phone

name address

Monday, August 6, 12

Question
struct foo {
 int x;
};
void bar(struct foo f) {
 f.x = 10;
}
int main() {
 struct foo f;
 f.x = 5;
 bar(f);
 // what’s f.x?
 return 0;
}

Monday, August 6, 12

Question
struct foo {
 char* x;
};
void bar(struct foo f) {
 f.x = “moo”;
}
int main() {
 struct foo f;
 f.x = “cow”;
 bar(f);
 // what’s f.x?
 return 0;
}

Monday, August 6, 12

Question
struct foo {
 int x;
};
void bar(struct foo* f) {
 f->x = 10;
}
int main() {
 struct foo f;
 f.x = 5;
 bar(&f);
 // what’s f.x?
 return 0;
}

Monday, August 6, 12

Question
struct foo {
 char* x;
};
void bar(struct foo* f) {
 f->x = “moo”;
}
int main() {
 struct foo f;
 f.x = “cow”;
 bar(&f);
 // what’s f.x?
 return 0;
}

Monday, August 6, 12

Structs and Pointers

• Oftentimes programmers will prefer
pointers to structs as opposed to just
structs

• Avoids extra copying

• Possibly appropriate

Monday, August 6, 12

typedef

Monday, August 6, 12

typedef

• Defines a new type that is an alias for
another type

Monday, August 6, 12

Example

struct foo {
 int x;
};

void bar(struct foo f) {
 f.x = 10;
}

• Before typedef...

Monday, August 6, 12

Example

struct foo {
 int x;
};

typedef struct foo Foo;

void bar(Foo f) {
 f.x = 10;
}

• After typedef

Monday, August 6, 12

More Examples

typedef long double ld;
typedef unsigned long ul;
typedef int SuperAwesome;

Monday, August 6, 12

Uses

• Shorten type names

• A point of abstraction

// for one computer
typedef EightBytes int;

// for another computer
typedef EightBytes long;

Monday, August 6, 12

Bubble Sort (If time)

Monday, August 6, 12

Bubble Sort

• Another sorting algorithm

• Basic idea:

• Go through a list of numbers

• Compare them pairwise

• If a pair is out of order, swap them

• Keep doing this until no swaps occur

Monday, August 6, 12

Example

• We want to sort according to integer <=

6 2 4 1 0 9 7

Monday, August 6, 12

Example

6 2 4 1 0 9 7

first second

Swap occurred?: False

Monday, August 6, 12

Example

2 6 4 1 0 9 7

first second

Swap occurred?: True

Monday, August 6, 12

Example

2 6 4 1 0 9 7

first second

Swap occurred?: True

Monday, August 6, 12

Example

2 4 6 1 0 9 7

first second

Swap occurred?: True

Monday, August 6, 12

Example

2 4 6 1 0 9 7

first second

Swap occurred?: True

Monday, August 6, 12

Example

2 4 1 6 0 9 7

first second

Swap occurred?: True

Monday, August 6, 12

Example

2 4 1 6 0 9 7

first second

Swap occurred?: True

Monday, August 6, 12

Example

2 4 1 0 6 9 7

first second

Swap occurred?: True

Monday, August 6, 12

Example

2 4 1 0 6 9 7

first second

Swap occurred?: True

Monday, August 6, 12

Example

2 4 1 0 6 9 7

first second

Swap occurred?: True

Monday, August 6, 12

Example

2 4 1 0 6 7 9

first second

Swap occurred?: True

Monday, August 6, 12

Example

2 4 1 0 6 7 9

first second

Swap occurred?: False

Monday, August 6, 12

Example

2 4 1 0 6 7 9

first second

Swap occurred?: False

Monday, August 6, 12

Example

2 1 4 0 6 7 9

first second

Swap occurred?: True

Monday, August 6, 12

Example

2 1 4 0 6 7 9

first second

Swap occurred?: True

Monday, August 6, 12

Example

2 1 0 4 6 7 9

first second

Swap occurred?: True

Monday, August 6, 12

Example

2 1 0 4 6 7 9

first second

Swap occurred?: True

Monday, August 6, 12

Example

2 1 0 4 6 7 9

first second

Swap occurred?: True

Monday, August 6, 12

Example

2 1 0 4 6 7 9

first second

Swap occurred?: True

Monday, August 6, 12

Example

2 1 0 4 6 7 9

first second

Swap occurred?: False

Monday, August 6, 12

Example

1 2 0 4 6 7 9

first second

Swap occurred?: True

Monday, August 6, 12

Example

1 2 0 4 6 7 9

first second

Swap occurred?: True

Monday, August 6, 12

Example

1 0 2 4 6 7 9

first second

Swap occurred?: True

Monday, August 6, 12

Example

1 0 2 4 6 7 9

first second

Swap occurred?: True

Monday, August 6, 12

Example

1 0 2 4 6 7 9

first second

Swap occurred?: True

Monday, August 6, 12

Example

1 0 2 4 6 7 9

first second

Swap occurred?: True

Monday, August 6, 12

Example

1 0 2 4 6 7 9

first second

Swap occurred?: True

Monday, August 6, 12

Example

1 0 2 4 6 7 9

first second

Swap occurred?: False

Monday, August 6, 12

Example

0 1 2 4 6 7 9

first second

Swap occurred?:True

Monday, August 6, 12

Example

0 1 2 4 6 7 9

first second

Swap occurred?:True

Monday, August 6, 12

Example

0 1 2 4 6 7 9

first second

Swap occurred?:True

Monday, August 6, 12

Example

0 1 2 4 6 7 9

first second

Swap occurred?:True

Monday, August 6, 12

Example

0 1 2 4 6 7 9

first second

Swap occurred?:True

Monday, August 6, 12

Example

0 1 2 4 6 7 9

first second

Swap occurred?:True

Monday, August 6, 12

Example

0 1 2 4 6 7 9

first second

Swap occurred?:False

Monday, August 6, 12

Example

0 1 2 4 6 7 9

first second

Swap occurred?:False

Monday, August 6, 12

Example

0 1 2 4 6 7 9

first second

Swap occurred?:False

Monday, August 6, 12

Example

0 1 2 4 6 7 9

first second

Swap occurred?:False

Monday, August 6, 12

Example

0 1 2 4 6 7 9

first second

Swap occurred?:False

Monday, August 6, 12

Example

0 1 2 4 6 7 9

first second

Swap occurred?:False

Monday, August 6, 12

Code

Monday, August 6, 12

